In Situ H2o and Temperature Detection Close to Burning Biomass Pellets Using Calibration-free Wavelength Modulation Spectroscopy

نویسنده

  • Florian M. Schmidt
چکیده

The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 μm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7×10 cm Hz, the system is applicable down to an H2O concentration of 0.1 % at 1000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded lab-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to realtime in situ measurements of H2O concentration and temperature time histories (0.25 s time resolution) in the hot gases 2 to 11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1200 and 1600 K and H2O concentrations up to 40 % were detected above the biofuels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field detection of CO and CH4 by NIR 2f modulation laser spectroscopy

  A novel compact fiber-coupled NIR system based on a DFB diode laser source is employed as a portable and sensitive gas sensor for trace detection of combustion pollutant molecules. We demonstrate the performance of such an NIR gas sensor by tracing the absorption lines of CO and CH4 using 2f-WMS technique at moderate temperature of T ~ 600°C in the recuperator channel of an industrial furnace...

متن کامل

Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser

A mid-infrared absorption strategy with calibration-free wavelength-modulation-spectroscopy (WMS) has been developed and demonstrated for real-time, in situ detection of nitric oxide in particulate-laden combustionexhaust gases up to temperatures of 700 K. An externalcavity quantum-cascade laser (ECQCL) near 5.2 μm accessed the fundamental absorption band of NO, and a wavelength-scanned, 1f -no...

متن کامل

Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using...

متن کامل

Tomographic laser absorption spectroscopy using Tikhonov regularization.

The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with nonhomogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of species concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burne...

متن کامل

The effect of chemical composition and burning temperature on pellet quality

The effect of pellet chemical composition and burning temperature on pellets’ properties of the Gol-e-Gohar hematite recovery plant was investigated in this study. Green pellets of different sodium hydroxide ratio and hydrated lime were prepared as well. Then the pellets were burnt in a muffle kiln under different temperature conditions. The Design Expert software was employed to explore ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015